

Main Variables in Extrusion

AIM

QualityConstant Profile Temperature

ACTION

- Extrusion SpeedBillet Temperature

Targeted and effective action

Action on Good Extrusion Time.

Even small improvements gets big results!

IES Configuration

IES Basic Components

Scanner & Sensor

Automatic positioning

during the die change of using the historic recipe

Automatic scan

when the profile is not in the reading field

Manual positioning

using pushbutton in dedicated page

IES – Sensor Position

Closed Loop Control and Optimization

Improving Reliability and Productivity of Aluminum Extrusion Process

- Maximize Throughput, Quality, & Profitability
 - Increase Press Speed 10-20%
 - Improve product quality with better surface finish, fewer defects, and reduced scrap
 - More consistent press performance with each operator running to Best Practices Standards
- Closed Loop Control automatically optimizes billet feed temperatures and profile temperatures at the exit of the press to increase speeds and assure high quality
- Detailed Process and Production Reports enable engineering and management to make informed decisions about process improvements

Operator Console

Isothermal Extrusion

How to Use

1 Set Up Die

2 Set Exit Temperature

Auto Set Profile Temperature

3 Set Auto vs Man and Offset

Manual press works as usually Automatic

IES applies continuous adjustment

Manual vs Automatic

17% Reduction in Extrusion Time with no sacrifice in quality

Automatic Temperature Control with IES

In manual mode, the press operates with the same controls that are used today, and in the automatic mode IES makes continuous adjustments to maintain best practices standards

- Billet Temperature Control applies a temperature offset to the final zone of the Billet Furnace. Two temperature offset adjustments are available for furnaces with tapered heating capabilities (front and rear billet)
- Dynamic Speed Control continuously calculates and applies a percent change (offset) to the press speed in order to maintain the optimal press exit temperature during the extrusion of a billet
- Step Change Speed Control applies a "learned" percent change (offset) to the starting speed for the next billet on the same die

Process Trend

Data collection & Reports

IES collects all production data and they are stored in a database.

Data referred to billet, die, alert and failure is disposable in every moment for internal review, statistics and maintenance.

Liquid Nitrogen Die Cooling

26 m/mm

With Liquid Nitrogen

Managed by IES

Improved quality surface

- limited profile oxidation at the die exit;
- dimensional quality improved;
- scrap rate reduced;
- optical appearance improved.

Increased die life

- protection of die and backer from overheating and deformation:

Reduced press down time

IES Configuration

